import torch import numpy as np def generate_toy_data(n_samples=500, seq_len=300, n_clusters=10, dim=5): """ Generates sequences where the hidden states are clusters in D-dimensional space. """ data_list = [] # Cluster Centers (Spread out) centers = np.random.randn(n_clusters, dim) * 10.0 print(f"Generated {n_clusters} cluster centers in {dim}D space.") for _ in range(n_samples): seq = [] state = np.random.randint(0, n_clusters) t = 0 while t < seq_len: dur = np.random.randint(10, 30) # Segment: Center + Noise noise = np.random.randn(dur, dim) segment = noise + centers[state] seq.append(segment) # Transition (No self-loops) next_state = state while next_state == state: next_state = np.random.randint(0, n_clusters) state = next_state t += dur full_seq = np.concatenate(seq)[:seq_len] data_list.append(torch.tensor(full_seq, dtype=torch.float32)) return data_list