import torch import torch.nn.functional as F def viterbi_decode(model, x): """ Returns the optimal sequence of states (path). """ with torch.no_grad(): T = x.shape[0] N = model.n_states D_max = model.max_dur # 1. Setup Probs log_emit = model.compute_emission_log_probs(x) log_trans = F.log_softmax(model.get_masked_transitions(), dim=1) log_dur = F.log_softmax(model.dur_logits, dim=1) log_pi = F.log_softmax(model.pi_logits, dim=0) # 2. Viterbi Tables # max_prob[t, s] = Best log-prob ending at t in state s max_prob = torch.full((T, N), -float('inf'), device=x.device) # backpointers[t, s] = (previous_state, duration_used) backpointers = {} # 3. Dynamic Programming for t in range(T): for d in range(1, D_max + 1): if t - d + 1 < 0: continue # Emission sum for segment seg_emit = log_emit[t-d+1 : t+1].sum(dim=0) dur_prob = log_dur[:, d-1] if t - d + 1 == 0: # Init score = log_pi + dur_prob + seg_emit for s in range(N): if score[s] > max_prob[t, s]: max_prob[t, s] = score[s] backpointers[(t, s)] = (-1, d) # -1 is Start else: # Transition prev_scores = max_prob[t-d] # (N,) # Find best transition for each target state s # (N, 1) + (N, N) -> (N, N) trans_scores = prev_scores.unsqueeze(1) + log_trans best_prev_score, best_prev_idx = trans_scores.max(dim=0) # (N,) current_score = best_prev_score + dur_prob + seg_emit for s in range(N): if current_score[s] > max_prob[t, s]: max_prob[t, s] = current_score[s] backpointers[(t, s)] = (best_prev_idx[s].item(), d) # 4. Backtracking best_end_state = torch.argmax(max_prob[T-1]).item() path = [] curr_t = T - 1 curr_s = best_end_state while curr_t >= 0: if (curr_t, curr_s) not in backpointers: break prev_s, d = backpointers[(curr_t, curr_s)] # Append this state 'd' times path = [curr_s] * d + path curr_t -= d curr_s = prev_s return path