Files
i6_setups/hsmm/toy_data.py
2026-01-22 13:50:41 +01:00

37 lines
1.1 KiB
Python

import torch
import numpy as np
def generate_toy_data(n_samples=500, seq_len=300, n_clusters=10, dim=5):
"""
Generates sequences where the hidden states are clusters in D-dimensional space.
"""
data_list = []
# Cluster Centers (Spread out)
centers = np.random.randn(n_clusters, dim) * 10.0
print(f"Generated {n_clusters} cluster centers in {dim}D space.")
for _ in range(n_samples):
seq = []
state = np.random.randint(0, n_clusters)
t = 0
while t < seq_len:
dur = np.random.randint(10, 30)
# Segment: Center + Noise
noise = np.random.randn(dur, dim)
segment = noise + centers[state]
seq.append(segment)
# Transition (No self-loops)
next_state = state
while next_state == state:
next_state = np.random.randint(0, n_clusters)
state = next_state
t += dur
full_seq = np.concatenate(seq)[:seq_len]
data_list.append(torch.tensor(full_seq, dtype=torch.float32))
return data_list